Abstract

AbstractThis work proposes and analyzes a residual a posteriori error estimator for the multiscale hybrid-mixed (MHM) method for the Stokes and Brinkman equations. The error estimator relies on the multi-level structure of the MHM method and considers two levels of approximation of the method. As a result the error estimator accounts for a first-level global estimator defined on the skeleton of the partition and second-level contributions from element-wise approximations. The analysis establishes local efficiency and reliability of the complete multiscale estimator. Also, it yields a new face-adaptive strategy on the mesh’s skeleton, which avoids changing the topology of the global mesh. Specially designed to work on multiscale problems, the present estimator can leverage parallel computers since local error estimators are independent of each other. Academic and realistic multiscale numerical tests assess the performance of the estimator and validate the adaptive algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.