Abstract

Modelling time to event data, when there is always a proportion of the individuals, commonly referred to as immunes who do not experience the event of interest, is of importance in many biomedical studies. Improper distributions are used to model these situations and they are generally referred to as cure rate models. In the literature, two main families of cure rate models have been proposed, namely the mixture cure models and promotion time cure models. Here we propose a new model by extending the mixture model via a generating function by considering a shifted Bernoulli distribution. This gives rise to a new class of popular distributions called the transmuted class of distributions to model survival data with a cure fraction. The properties of the proposed model are investigated and parameters estimated. The Bayesian approach to the estimation of parameters is also adopted. The complexity of the likelihood function is handled through the Metropolis-Hasting algorithm. The proposed method is illustrated with few examples using different baseline distributions. A real life data set is also analysed. AMS subject classifications: 62N02, 62F15

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.