Abstract

Robots generally excel at specific tasks in structured environments but lack the versatility and the adaptability required to interact with and locomote within the natural world. To increase versatility in robot design, we present robotic skins that can wrap around arbitrary soft bodies to induce the desired motions and deformations. Robotic skins integrate actuation and sensing into a single conformable material and may be leveraged to create a multitude of controllable soft robots with different functions or gaits to accommodate the demands of different environments. We show that attaching the same robotic skin to a soft body in different ways, or to different soft bodies, leads to distinct motions. Further, we show that combining multiple robotic skins enables complex motions and functions. We demonstrate the versatility of this soft robot design approach in a wide range of applications-including manipulation tasks, locomotion, and wearables-using the same two-dimensional (2D) robotic skins reconfigured on the surface of various 3D soft, inanimate objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.