Abstract

The omega-3 (ω3) fatty acid docosahexaenoic acid (DHA) can suppress inflammation, specifically IL-1β production through poorly understood molecular mechanisms. Here, we show that DHA reduces macrophage IL-1β production by limiting inflammasome activation. Exposure to DHA reduced IL-1β production by ligands that stimulate the NLRP3, AIM2, and NAIP5/NLRC4 inflammasomes. The inhibition required Free Fatty Acid Receptor (FFAR) 4 (also known as GPR120), a G-protein coupled receptor (GPR) known to bind DHA. The exposure of cells to DHA recruited the adapter protein β-arrestin1/2 to FFAR4, but not to a related lipid receptor. DHA treatment reduced the initial inflammasome priming step by suppressing the nuclear translocation of NF-κB. DHA also reduced IL-1β levels by enhancing autophagy in the cells. As a consequence macrophages derived from mice lacking the essential autophagy protein ATG7 were partially resistant to suppressive effects of DHA. Thus, DHA suppresses inflammasome activation by two distinct mechanisms, inhibiting the initial priming step and by augmenting autophagy, which limits inflammasome activity.

Highlights

  • Inflammation is the hallmark of many chronic diseases including type II diabetes, heart disease, cancer, and arthritis

  • A recent report showed that the v3 fatty acid docosahexaenoic acid (DHA) can inhibit the production of pro-inflammatory cytokines such as TNF-a and IL-6 in RAW 247.6 cells and in primary mouse macrophages by binding to a G-protein coupled receptor (GPR) termed Free Fatty Acid Receptor (FFAR) 4, known as GPR120 [2]

  • To confirm these results we examined the effect of DHA on primary mouse bone marrow derived macrophages (BMDMs)

Read more

Summary

Introduction

Inflammation is the hallmark of many chronic diseases including type II diabetes, heart disease, cancer, and arthritis. We tested whether the v3 FFA DHA might have the opposite effect on macrophages and suppress inflammasome activation, thereby reducing IL-1b secretion. DHA inhibits Inflammasome activation in macrophages To test whether v3 FFA affected IL-1b production by macrophages following exposure of the cells to a known NLRP3 activator we initially chose to treat the human macrophage cell line THP-1 with LPS and ATP in the presence or absence of DHA.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.