Abstract

We tested herein the hypothesis that peroxisome proliferator activated receptor γ (PPARγ) is a major mediator of omega-3 (n-3) protective actions against high-fat diet (HFD) induced obesity, glucose intolerance, and adipose tissue inflammation. C57BL6 wild-type and fat-1 transgenic (fat-1) mice were fed a low-fat diet (LFD) or HFD, treated or not with PPARγ antagonist, and evaluated for energy balance, adiposity, glucose tolerance, and adipose tissue inflammation. Fat-1 mice were protected from obesity, fasting hyperglycemia, glucose intolerance, and adipose tissue inflammation. PPARγ inhibition completely abolished fat-1 protection against HFD-induced glucose intolerance, but not obesity or adipose tissue inflammation. To investigate the role of myeloid cell as mediator of n-3 beneficial metabolic actions, mice with deletion (LyzM-PPARγ(KO)) or nondeletion (LyzM-PPARγ(WT)) of PPARγ in myeloid cells were fed either LFD or HFD (lard) or an HFD rich in n-3 (fish oil). Our findings indicate that myeloid cell associated PPARγ is not involved in the attenuation of HFD-induced glucose intolerance and adipose tissue inflammation induced by n-3. High endogenous n-3 fatty acid levels protect from HFD obesity, glucose intolerance, and adipose tissue inflammation. Among these, only protection against glucose intolerance is mediated by non-myeloid cell PPARγ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.