Abstract

Although heterocyclic aromatics make up a vast group of water contaminants, the effect of enzyme on this class of recalcitrant compounds is largely unknown. Here, the feasibility of treatment of selected quinolines with soybean peroxidase is demonstrated and the effects of the most important parameters; pH, enzyme concentration, and peroxide concentration are optimized for each compound. 3-hydroxy and 3-aminoquinoline were found to be substrates amenable to ≥ 94% removal with pH optima of 8.6 and 5.6, respectively. In order to identify the transformation products of such treatment, the solution and precipitate after enzymatic treatment were analyzed by mass spectrometry to find that the dominant products were dimers and trimers from oxidative radical coupling. In addition, for 3-aminoquinoline azo-linked dimers and trimers were found. Computational techniques used to investigate the influence of redox potential and ionization energy of pollutants on their treatability by SBP showed a possible threshold between substrates and non-substrates. Computed spin densities were used to predict the regiochemistry of the radical coupling reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.