Abstract

Artemia franciscana embryos undergo encystment, developmental arrest and diapause, the last characterized by profound metabolic dormancy and extreme stress resistance. Encysted embryos contain an abundant small heat shock protein termed p26, a molecular chaperone that undoubtedly has an important role in development. To understand better the role of p26 in Artemia embryos, the structural and functional characteristics of full-length and truncated p26 expressed in Escherichia coli and COS-1 cells were determined. p26 chaperone activity declined with increasing truncation of the protein, and those deletions with the greatest adverse effect on protection of citrate synthase during thermal stress had the most influence on oligomerization. When produced in either prokaryotic or eukaryotic cells the p26 alpha-crystallin domain consisting of amino acid residues 61-152 existed predominantly as monomers, and p26 variants lacking the amino-terminal domain but with intact carboxyl-terminal extensions were mainly monomers and dimers. The amino terminus was, therefore, required for efficient dimer formation. Assembly of higher order oligomers was enhanced by the carboxyl-terminal extension, although removing the 10 carboxyl-terminal residues had relatively little effect on oligomerization and chaperoning. Full-length and carboxyl-terminal truncated p26 resided in the cytoplasm of transfected COS-1 cells; however, variants missing the complete amino-terminal domain and existing predominantly as monomers/dimers entered the nuclei. A mechanism whereby oligomer disassembly assisted entry of p26 into nuclei was suggested, this of importance because p26 translocates into Artemia embryo nuclei during development and stress. However, when examined in Artemia, the p26 oligomer size was unchanged under conditions that allowed movement into nuclei, suggesting a process more complex than just oligomer dissociation.

Highlights

  • Mechanisms and the resulting oligomers vary for sHsps from different sources (2, 4, 16 –18)

  • To understand better the role of p26 in Artemia embryos, the structural and functional characteristics of full-length and truncated p26 expressed in Escherichia coli and COS-1 cells were determined. p26 chaperone activity declined with increasing truncation of the protein, and those deletions with the greatest adverse effect on protection of citrate synthase during thermal stress had the most influence on oligomerization

  • P26 Oligomer Formation and Chaperone Activity—Isopropyl1-thio-␤-D-galactopyranoside induction of transformed E. coli yielded polypeptides on Western blots of the appropriate size that reacted strongly with OmniProbe, bands corresponding to p26 were not readily visible in Coomassie Bluestained gels (Fig. 2, a and b)

Read more

Summary

Introduction

Mechanisms and the resulting oligomers vary for sHsps from different sources (2, 4, 16 –18). Synthesis and Oligomerization of p26 in Transfected Mammalian Cells—Except for p26-N⌬60 and p26-␣, which reacted with OmniProbe, protein extracts from COS-1 cells transfected with p26 cDNA-containing expression vectors yielded polypeptides of the expected size on Western blots with anti-p26 antibody (Fig. 5).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.