Abstract
Three cholate foldamers were synthesized by the click reaction between an azide-functionalized cholate trimer and different dialkynyl linkers. The foldamers were labeled with pyrene groups at the ends for their conformational study. The linkers between the two tricholate fragments were found to strongly influence the conformation of the foldamers in solution, as well as their ability to transport hydrophilic molecules across lipid bilayers. The folding of the oligocholates in mixed organic solvents was studied by fluorescence and UV/Vis spectroscopy. Although these molecules could not fold permanently in lipid bilayers, they were found to translocate carboxyfluorescein readily across by a carrier-based mechanism. The transport is proposed to happen when the oligocholates adopt transiently folded structures with a hydrophobic exterior and a hydrophilic internal cavity. The transport rate strongly depended on the structure of the oligocholates and was sensitive even to the change of a single bond in a foldamer 3000 Da in MW. Better folded oligocholates in solution gave slower transport in the membranes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.