Abstract

mAb-based approaches were used to identify cell surface components involved in the development and function of the frog olfactory system. We describe here a 205-kD cell surface glycoprotein on olfactory receptor neurons that was detected with three mAbs: 9-OE, 5-OE, and 13-OE. mAb 9-OE immunoreactivity, unlike mAbs 5-OE and 13-OE, was restricted to only the axons and terminations of the primary sensory olfactory neurons in the frog nervous system. The 9-OE polypeptide(s) were immunoprecipitated and tested for cross-reactivity with known neural cell surface components including HNK-1, the cell adhesion molecule L1, and the neural cell adhesion molecule (N-CAM). These experiments revealed that 9-OE-reactive molecules were not L1 related but were a subset of the 200-kD isoforms of N-CAM. mAb 9-OE recognized epitopes associated with N-linked carbohydrate residues that were distinct from the polysialic acid chains present on the embryonic form of N-CAM. Moreover, 9-OE N-CAM was a heterogeneous population consisting of subsets both with and without the HNK-1 epitope. Thus, combined immunohistochemical and immunoprecipitation experiments have revealed a new glycosylated form of N-CAM unique to the olfactory system. The restricted spatial expression pattern of this N-CAM glycoform suggests a possible role in the unusual regenerative properties of this sensory system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.