Abstract
Several recent studies showed that olfactory mucosal transplantation after spinal cord injury promotes extensive regeneration of the injured spinal cord. We examined the efficacy of olfactory mucosal transplantation for bladder dysfunction after spinal cord injury in rats. In adult female rats the Th9-10 spinal cord was completely transected, followed by olfactory mucosal transplantation or gelatin sponge filling as the control. Each group was examined by cystometrogram and external urethral sphincter electromyogram. Calcitonin gene-related peptide and growth associated protein 43 double positive expression in the L6/S1 dorsal horn was evaluated by immunohistochemistry. Transplant sites were examined by immunohistochemistry with antibodies against neurofilament M and neuronal class III beta-tubulin. On cystometrogram voiding efficiency was significantly higher in the transplantation group than in controls. On external urethral sphincter electromyogram with simultaneous cystometrogram the transplantation group showed a larger ratio of interburst silent periods to burst activity duration and a greater number of high frequency oscillations. In the transplantation group calcitonin gene-related peptide and growth associated protein 43 double positive expression in the L6/S1 dorsal horn was less dense than in controls. The transplantation group showed strong neurofilament M and neuronal class III beta-tubulin expression at the transplant site. Olfactory mucosal transplantation after spinal cord injury weakened external urethral sphincter excessive bursting and increased the urethral opening to improve voiding efficiency. Olfactory mucosal transplantation may modify emergence of the spinal micturition reflex after spinal cord injury. Transplantation resulted in new axons growing at the transplant site, implying the possible existence of interneuron bridging across the injured spinal cord.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.