Abstract

We investigate chemical aspects of mating in the marine copepod Temora longicornis (Copepoda, Calanoidea). Our emphasis is the female pheromone signaling in form of well-defined trails for males to follow, observed in Doall et al. (Phil Trans R Soc Lond B 353:681-689, 1998). The viscous environment and the properties of the odorants play important roles as the spread of the pheromone trail limits the time during which it is useful for tracing. A key observation from our earlier work is the ability of a searching male to detect the direction of the female and to correct its swimming direction if necessary. We propose a simple mathematical model for the spread of a pheromone from a moving source and carry out numerical simulations of two possible detection mechanisms. We find that a searching agent that is capable to detect a ratio outperforms a searcher that depends on the gradient of a single compound. This suggests that copepod sex pheromones consist of blends of chemical compounds, and that a ratio detection mechanism similar to that in airborne insects is at work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.