Abstract

BackgroundThe objective of the present study was to determine the effect of various concentrations of oleic acid (OA) on KATP channel expression and the potential relationship to exogenous nitrogen monoxide and protein kinase C levels. MethodsHuman umbilical artery smooth muscle cells (HUASMCs), between the 7th and 10th passages, were divided into control group, OA group (final OA concentration of 0, 50, 100 or 200 μmol/L), nitric oxide (NO) intervention group, protein kinase C inhibitor group or GF-109203X (GFX) intervention group. Western immunoblotting was used to detect the protein expression of the KATP channel subunit Kir6.1. Also, quantitative real-time polymerase chain reaction analysis to determine Kir6.1 messenger RNA levels and whole-cell patch clamping to measure KATP currents were performed. ResultsThe results suggested that OA inhibited Kir6.1 protein and messenger RNA expression in HUASMCs. Under a high concentration of potassium (140 mmol/L), 100 μmol/L OA significantly reduced ATP-sensitive potassium current density, whereas a low extracellular concentration of potassium (5.4 mmol/L) did not influence KATP density. Pretreatment with either exogenous NO or GFX weakened the OA-induced inhibition of KATP in HUASMCs. ConclusionsThe study demonstrated that OA inhibited Kir6.1, a KATP channel subunit, in HUASMCs, and indirectly inhibited the KATP current. In addition, the results indicated that NO and/or GFX partially reversed OA inhibition in HUASMCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.