Abstract

In certain conditions, (part of) an oil spill can disappear from the water surface through a process called natural dispersion. One available oil spill response option is to enhance this process by addition of dispersants (chemical dispersion). An informed decision for such response requires insight in the oil slick size WITH and WITHOUT treatment. This thesis aims to enable such assessment of net effectiveness, by providing a strategy for modelling the dispersion process. A plunging jet test was developed for investigating entrainment and droplet breakup. Using this set up the relevance of oil layer thickness was proven and an algorithm to model droplet sizes of dispersed oil was defined. The findings were applied in a model simulating dispersion and resurfacing as well as the wind-driven differential transport between the floating slick and suspended droplets. The simulation outputs help assess the added value (or not) of dispersant application in reducing the surface oil slick size for different oil types and conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.