Abstract

Experimental investigations employing Planar Laser-induced fluorescence visualisation of the qualitative distribution of the OH radical (OH-PLIF), coupled with surface pressure measurements, have been made of flow in a generic, nominally two-dimensional inlet-injection radical farming supersonic combustion scramjet engine model. The test flows were provided by a hypersonic shock tunnel, and covered total enthalpies corresponding to the flight Mach number range 8.7–11.8 and approximately 150 kPa dynamic pressure. The surface pressure measurements displayed radical farming behaviour, that is a series of adjacent high and low pressure regions corresponding to successive shock/expansion structures, with no significant combustion-induced pressure rise until the second structure. OH-PLIF imaging between the first two structures provides the first direct experimental evidence of significant OH radical concentrations upstream of the ignition point in this mode of scramjet operation and shows that combustion reactions were occurring in highly localised regions in a complex turbulent and poorly micromixed fuel/air mixing layer confined to the fuel injection side of the combustor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.