Abstract

Multi-Objective Optimization (MOO) metaheuristics are commonly used for solving complex MOO problems characterized by non-convexity, multimodality, mixed-types variables, non-linearity, and other complexities. However, often metaheuristics suffer from slow convergence. Opposition-Based Learning (OBL) has been successfully used in the past for acceleration of single-objective metaheuristics. The most successful example in this regard is Opposition-based Differential Evolution (ODE). However, OBL was not fully explored for MOO metaheuristics. Therefore, in this paper, to the best of our knowledge, for the first time OBL is successfully adapted for a MOO metaheuristic by using a single population (no coevolution). The proposed MOO metaheuristic is based on the GDE3 method and it is called Opposition-based GDE3 (OGDE3). OGDE3 utilizes OBL for opposition-based population initialization and self-adaptive oppositionbased generating jumping. Furthermore, the new algorithm is compared with seven state-of-the-artMOO metaheuristics using the ZDT test suite. OGDE3 outperformed the other algorithms; the results are explained and discussed in detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.