Abstract

Chimeric antigen receptor T-cell therapy (CAR T) has revolutionized the treatment landscape for hematologic malignancies, notably B-cell non-Hodgkin lymphoma (B-NHL) and B-cell acute lymphoblastic leukemia (B-ALL). While autologous CAR T products have shown remarkable efficacy, their complex logistics, lengthy manufacturing process, and high costs impede widespread accessibility and pose therapeutic challenge especially for patients in rapid need for therapy. "Off-the-shelf" allogeneic CAR T-cell therapy (alloCAR T) has emerged as a promising alternative therapy, albeit experimental to date. AlloCARTs are derived from healthy donors, manufactured by batches and stored, making them available off-the-shelf which lowers financial burden. Various gene editing techniques have been employed to mitigate graft-versus-host disease (GVHD) and host-versus-graft (HvG) to enhance alloCAR T persistence. In this review, we summarize available manufacturing techniques, current evidence, and discuss challenges faced with the use of alloCAR Ts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.