Abstract

We derive kinematic properties for two recent solar coronal transient waves observed off the western solar limb with the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) mission. The two waves occurred over $\sim10$-min intervals on consecutive days - June 12 and 13, 2010. For the first time, off-limb waves are imaged with a high 12-sec cadence, making possible detailed analysis of these transients in the low corona between $\sim1.1$-2.0 solar radii ($R_{s}$). We use observations in the 193 and 211 {\AA} AIA channels to constrain the kinematics of both waves. We obtain initial velocities for the two fronts of $\sim1287$ and $\sim736$ km s$^{-1}$, and accelerations of $-1170$ and $-800$ m s$^{-2}$, respectively. Additionally, differential emission measure analysis shows the June 13 wave is consistent with a weak shock. EUV wave positions are correlated with positions from simultaneous type II radio burst observations. We find good temporal and height association between the two, suggesting that the waves may be the EUV signatures of coronal shocks. Furthermore, the events are associated with significant increases in proton fluxes at 1 AU, possibly related to how waves propagate through the coronal magnetic field. Characterizing these coronal transients will be key to connecting their properties with energetic particle production close to the Sun.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.