Abstract
Quadrature phase shift keying (QPSK) is a digital modulation technique that transmits data at a constant frequency whilst varying the phases of the carrier signal. QPSK is one of the fundamental modulation schemes for orthogonal frequency division multiplexing systems (OFDM). It is a stable modulation technique with good spectral efficiency. However, during transmission, the carrier signal can undergo numerous phase changes. This creates phase ambiguity problems at the receiver end. This results in inter-symbol interference (ISI) and a high bit error rate (BER). In this paper, the wind-driven optimization was incorporated into the genetic algorithm (GA) as its population selection function. This hybrid algorithm was used to determine the phase assignments for the QPSK. The developed QPSK was implemented on an OFDM network and the message signal was recovered at more than 92% accuracy in a noisy Rayleigh fading channel and 100% accuracy in a noiseless channel. The enhancements greatly mitigated phase ambiguity and bit errors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.