Abstract

The study of developmental trajectories is where epigenetics truly shines. The "epi" in epigenetics captures the fact that although epigenetic processes also preside over the maintenance and termination of gene expression, the unfolding and remodeling of chromatin architecture are especially critical to prepare genes for regulated transcription. These properties imply being on a path, a trajectory to events that will occur later thanks to epigenetic programming. Thus epigenetics is about timed and timely events. In this article we discuss epigenetic and genetic evidence from several independent studies of asthma, chronic obstructive pulmonary disease, and lung function, which converge to highlight a potential role of the TGF-β gene pathway in these processes. These results raise the possibility that at least in a subset of subjects, these conditions might be functionally connected in ways that need to be further defined but that likely reflect the uniquely pleiotropic nature of TGF-β pathway genes, particularly their ability to control both lung development and immune responses essential for regulation and inflammation. Further characterization of this pathway in longitudinally phenotyped populations might unmask novel trajectories to lung disease that begin in utero and unfold into old age.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.