Abstract

Various types of oculocutaneous albinism (OCA) are associated with reduced pigmentation in the skin, hair, and eyes that results from mutations in genes involved in melanin synthesis. Immortal mouse melanocyte lines (melan-a, melan-b, and melan-c) provide opportune models with which to investigate the etiology of two different types of OCA (types I and III), which arise from mutations in Tyr and Tyrp1, respectively. We compared intracellular processing, sorting, and degradation of tyrosinase and Tyrp1, and the effects on their catalytic function and melanin synthesis, in these wild-type and mutant melanocytes. A mutation in either Tyr or Tyrp1 increased the time of association of tyrosinase and Tyrp1 with calnexin and Bip, which in turn resulted in the retention of these mutant products in the ER. A mutation in either gene selectively enhanced the duration and efficiency of chaperone interactions (even with the wild-type protein in the mutant melanocytes) and markedly slowed their transport to melanosomes. These results show that OCA1 and OCA3 are (in some cases, at least) ER retention diseases wherein a mutation in one melanogenic protein affects the maturation and stability of the other in the melanogenic pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.