Abstract

AbstractThe chemical composition of about 500 diagenetic chlorites, determined by electron microprobe, has been studied in six different sedimentary sequences spanning conditions from early diagenesis to low-grade metamorphism, in the temperature range 40–330°C. The range of Fe/(Fe + Mg) is almost complete and is positively correlated with Al. Five sequences show the same compositional variation. In each, the most siliceous chlorites have the lowest R2+, substantially more octahedral than tetrahedral Al, and the lowest octahedral totals. Conversely, the least siliceous have the highest R2+, nearly equal octahedral and tetrahedral Al, and octahedral totals close to that for an ideal trioctahedral mineral. A dioctahedral substitution Si[]R2−2 (where [] represents a vacant octahedral site) which decreases with temperature, describes this variation. Low octahedral totals are, however, induced by the method of calculation and need not indicate vacancies; for published wet chemical analyses of metamorphic chlorites they may simply indicate oxidation of Fe. Intergrown dioctahedral phyllosilicates may partly account for apparent vacancies in diagenetic chlorites. Nevertheless, the correlation of composition with temperature and similarities to the temperature-related evolution of synthetic chlorites, suggest that diagenetic chlorites are compositionally distinct from, but metastable with respect to, fully trioctahedral metamorphic chlorites. Temperature-related trends are modified by bulk composition, complicating their potential use for low-temperature geothermometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.