Abstract

Radionuclide dispersion model, which is of critical importance to the emergency response of severe nuclear accident, is used to estimate the consequences arising from accidental or routine releases and to predict areas of high contamination. It is difficult to evaluate the radioactive consequence accurately and rapidly for the accidental release of radionuclides from marine reactor because of the complex mobility feature in the sea. Based on CFD method, a finite-volume, three-dimensional regional oceanic dispersion model was developed in this paper to simulate the dispersion of radionuclides originating from marine reactor. The simulated dose variation of 137Cs presented good agreement with the monitoring data of marine radioactive pollution caused by Fukushima Dai-ichi nuclear accident, which demonstrated the validity of the method. A severe accident scenario of marine reactor was simulated and analyzed, which indicates that the regional oceanic dispersion model can provide dose assessment for nuclear emergency response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.