Abstract

Abstract The NCEP Climate Forecast System Reanalysis (CFSR) represents a new effort with the first guess from a high-resolution coupled system and offers prospects for improved simulation of mesoscale air–sea coupled variability. This study aims to describe the characteristics of ocean–atmosphere covariability associated with tropical instability waves (TIWs) in the Pacific for the CFSR, and to assess how well they agree with in situ and satellite observations. Multiyear daily high-resolution CFSR data are used to describe variability associated with TIWs. Results show that TIW-induced SST variations exhibit pronounced seasonal and interannual variability that are tightly connected with cold tongue variations. The analysis illustrates coherent patterns associated with TIWs, both in the ocean and the atmosphere. Moisture and air temperature maximums are located west of SST maximums, leading to downstream displacement of surface pressure minimums relative to SST maximums. Surface winds accelerate (decelerate) over warm (cold) water, and a thermally direct circulation is created. Significant signals are observed in low-level cloud cover, which are closely in phase with surface wind convergences. The magnitudes of TIW-induced surface wind, surface pressure, and cloud cover perturbations agree well with in situ and satellite observations. Further analysis shows that surface net heat flux perturbations are dominated by latent heat fluxes and have a large negative feedback on TIW SST variability (~40 W m−2 °C−1). Water vapor perturbation is the primary factor contributing to changes in latent heat fluxes, while SST-induced wind perturbation plays a secondary role. The analysis presented here highlights that the CFSR provides an unprecedented opportunity to study the physical mechanisms for the TIWs, as well as their influences on climate variability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.