Abstract
Shallow-Trench-Isolation (STI), as one of the primary techniques for device isolation in complementary metal-oxide semiconductor (CMOS), requires accurate and precise CD and line-shape control during wafer process. Thus, the measurement of the critical dimensions after lithography and after formation of the STI structure is extremely important for process control. Currently used SEM technologies are either destructive or incapable of identifying the profile features. The necessary averaging of CD-SEM measurements to compensate for its large error diminishes its usage in automatic process control. In this paper we use the Optical Critical Dimension (OCD) technique to study focus exposure matrix (FEM) wafers of photoresist patterns and STI structures and compare the results with CD-SEM measurements. OCD measurement is performed with normal-incidence polarized reflectometry. Rigorous Coupled-Wave Analysis (RCWA) is combined with real-time regression to provide CD and profile parameters with excellent sensitivity to sub-50 nm grating lines. Thus, non-destructive and fast real-time measurements are easily accomplished during wafer processing. Optimization of STI model parameters is discussed. The critical dimensions of 121 dies extracted by OCD exhibit excellent correlation with those obtained by CD-SEM, with R-squared as high as 0.995 on STI wafers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.