Abstract

In this study, potassium vapor was prepared by using potassium carbonate (K2CO3) and activated carbon (C) reagents to simulate the actual situation of adsorbing potassium vapor from the sinter in the blast furnace. The potassium-rich sinter was characterized by X-ray diffraction (XRD), flame atomic absorption spectrometry (FAAS), and scanning electron microscopy (SEM-EDS). The effects of potassium vapor content on the enrichment ratio, adsorption rate, and low-temperature reduction degradation index (RDI+3.15mm) of sinter have been studied. The results show that with the increase of potassium vapor content, the enrichment ratio of potassium in the sinter increases, and the adsorption rate of potassium in the sinter increases first and then decreases, which was opposite to the trend of the low-temperature reductive degradation index of the sinter. When the potassium vapor content was increased by 50 times, the enrichment ratio and low-temperature reduction powder of the sinter are the highest, which were 2576% and 85.3%, respectively, and the adsorption rate of the sinter was the lowest, which is 51.5%. Meanwhile, potassium vapor changes from physical adsorption K2CO3 to chemical adsorption KFeO2 as the potassium vapor content increases. In addition, the transformation of the occurrence form of potassium vapor in the sinter during the rising process has also been clarified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.