Abstract

Per- and polyfluorolkyl substances (PFAS) were measured in the water and fish from 20 coastal tourist resorts in China, to investigate their sources, seasonal differences, and bioconcentration. An oxidative method with hydroxyl radicals was used to extract potential perfluoroalkyl acid (PFAA) precursors in the water of resorts. The results indicated that the total concentrations of target chemicals (i.e., ΣPFAS) in the original water were 59.4–138, 32.7–77.2, and 14.6–29.9 ng L−1 in December, April, and August, respectively. C4–C10 perfluorocarboxlate (PFCA) and perfluorooctane sulfonate (PFOS) accounted for 67%–92% of the ΣPFAS contents in all water samples. The PFAS concentrations in the muscles and liver of fish were 16.0–162 ng g−1 ww and 186–1240 ng g−1 ww, respectively. The dominant compounds were perfluorobutanoate acid (PFBA) and PFOS in the water, and perfluorooctanoic acid (PFOA) and PFOS in fish tissues. High bioconcentration were observed for PFCA (C ≥ 8) and perfluorosulfonate (PFSA, C ≥ 6). After oxidative conversion, the water exhibited a noticeable increase in the ΣPFAS value. Precursors that generated C4–C9 PFCA were more prevalent than precursors that generated other PFCA upon oxidation. The concentration of C8-based precursor was higher than that of C6-based precursor in wet and dry seasons. This study is the first to apply an oxidative method to investigate PFAS pollution in the water of coastal tourist resorts. The results verified that PFAA precursors exist in the water of coastal tourist resorts, and more attention should be given to the existence of PFAA precursors and the safety of water in coastal tourist resorts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.