Abstract

In this work, we examined occlusion of 22Na+ and 86Rb+ in membranous and detergent-solubilized Na,K-ATPase from outer renal medulla. Optimum conditions for occlusion of 22Na+ were provided by formation of the phosphorylated complex from the beta,gamma-bidentate complex of chromium (III) with ATP (CrATP). Release of occluded cations occurred at equally slow rates in soluble and membrane-bound Na,K-ATPase. Values of 22Na+ occlusion as high as 11 nmol/mg of protein were measured, corresponding to 1.8-2.7 mol of Na+/mol of phosphorylated Na,K-ATPase as determined by 32P incorporation from [gamma-32P]CrATP. Maximum capacity for phosphorylation from [gamma-32P]CrATP was 6 nmol/mg of protein and equal to capacities for binding of [48V]vanadate and [3H]ouabain. The stoichiometry for occlusion of Rb+ was close to 2 Rb+ ions/phosphorylation site. In an analytical ultracentrifuge, the soluble Na+- or Rb+-occluded complexes showed sedimentation velocities (S20,w = 6.8-7.4) consistent with monomeric alpha beta-units. The data show that soluble monomeric alpha beta-units of Na,K-ATPase can occlude Rb+ or Na+ with the same stoichiometry as the membrane-bound enzyme. The structural basis for occlusion of cations in Na,K-ATPase is suggested to be the formation of a cavity inside a monomeric alpha beta-unit constituting the minimum protein unit required for active Na,K-transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.