Abstract
Single-molecule fluorescence microscopy is a powerful tool for revealing chemical dynamics and molecular association mechanisms, but has been limited to low concentrations of fluorescent species and is only suitable for studying high affinity reactions. Here, we combine nanophotonic zero-mode waveguides (ZMWs) with fluorescence resonance energy transfer (FRET) to resolve single-molecule association dynamics at up to millimolar concentrations of fluorescent species. This approach extends the resolution of molecular dynamics to >100-fold higher concentrations, enabling observations at concentrations relevant to biological and chemical processes, and thus making single-molecule techniques applicable to a tremendous range of previously inaccessible molecular targets. We deploy this approach to show that the binding of cGMP to pacemaking ion channels is weakened by a slower internal conformational change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.