Abstract

Numerous breast phantoms have been developed to be as realistic as possible to ensure the accuracy of image quality analysis, covering a greater range of applications. In this study, we simulated three different densities of the breast parenchyma using paraffin gel, acrylic plates and PVC films. Hydroxyapatite was used to simulate calcification clusters. From the images acquired with a GE Senographe DR 2000D mammography system, we selected 68 regions of interest (ROIs) with and 68 without a simulated calcification cluster. To validate the phantom simulation, we selected 136 ROIs from the University of South Florida’s Digital Database for Screening Mammography (DDSM). Seven trained observers performed two observer experiments by using a high-resolution monitor Barco mod. E-3620. In the first experiment, the observers had to distinguish between real or phantom ROIs (with and without calcification). In the second one, the observers had to indicate the ROI with calcifications between a pair of ROIs. Results from our study show that the hydroxyapatite calcifications had poor contrast in the simulated breast parenchyma, thus observers had more difficulty in identifying the presence of calcification clusters in phantom images. Preliminary analysis of the power spectrum was conducted to investigate the radiographic density and the contrast thresholds for calcification detection. The values obtained for the power spectrum exponent (β) were comparable with those found in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.