Abstract
<p>This paper presents a power system frequency control strategy that integrates an observer-based event-triggered mechanism (ETM) to defend against denial-of-service (DoS) attacks and accommodates the integration of renewable energy sources. The proposed strategy incorporates demand response by enabling air conditioning loads (ACs) to participate in frequency regulation, thereby enhancing system flexibility and stability. To address the challenges posed by limited network bandwidth and potential message blocking, the ETM minimizes communication while defending against DoS attacks. The stability of the closed-loop system is guaranteed by deriving an $ H_{\infty} $ stability criterion using the Lyapunov–Krasovskii function method, with controller parameters determined through linear matrix inequalities (LMIs). A two-area power system simulation is conducted to validate the feasibility and effectiveness of the proposed approach, demonstrating its ability to maintain stable frequency control under cyber-attack scenarios and varying renewable energy contributions.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.