Abstract

This paper is concerned with the observer-based event-triggered control for a continuous networked linear system subject to denial-of-service (DoS) attacks, where the attacks are launched periodically to block the data transmission in control channels. First, a new observer state-based resilient event-triggering scheme is developed in the presence of DoS attacks. Second, a novel event-based switched system model is established by considering the effect of the event-triggering scheme and DoS attacks simultaneously. By virtue of this new model combined with a piecewise Lyapunov-Krasovskii functional method, the sufficient conditions are derived to guarantee exponential stability of the resulting switched system. It is shown that the proposed results can establish a quantitative relationship among the launching/sleeping periods of the attacks, the event-triggering parameters, the sampling period, and the exponential decay rate. Third, criteria for designing a desired observer-based event-triggered controller are provided and expressed in terms of a set of linear matrix inequalities. Finally, an offshore structure model is presented to illustrate the efficiency of the developed control method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.