Abstract

Having an extreme topography and heterogeneous climate, the Upper Indus Basin (UIB) is more likely to be affected by climate change and it is a crucial area for climatological studies. Based on the monthly minimum temperature (Tmin), maximum temperature (Tmax) and precipitation from nine meteorological stations, the spatiotemporal variability of temperature and precipitation were analyzed on monthly, seasonal, and annual scales. Results show a widespread significant increasing trend of 0.14 °C/decade for Tmax, but a significant decreasing trend of −0.08 °C/decade for Tmin annually, during 1955–2016 for the UIB. Seasonally, warming in Tmax is stronger in winter and spring, while the cooling in Tmin is greater in summer and autumn. Results of seasonal Tmax indicate increasing trends in winter, spring and autumn at rates of 0.38, 0.35 and 0.05 °C/decade, respectively, while decreasing in summer with −0.14 °C/decade. Moreover, seasonal Tmin results indicate increasing trends in winter and spring at rates of 0.09 and 0.08 °C/decade, respectively, while decreasing significantly in summer and autumn at rates of −0.21 and −0.22 °C/decade respectively for the whole the UIB. Precipitation exhibits an increasing trend of 2.74 mm/decade annually, while, increasing in winter, summer and autumn at rates of 1.18, 2.06 and 0.62 mm/decade respectively. The warming in Tmax and an increase in precipitation have been more distinct since the mid-1990s, while the cooling in Tmin is observed in the UIB since the mid-1980s. Warming in the middle and higher altitude (1500–2800 m and >2800 m) are much stronger, and the increase is more obvious in regions with elevation >2800 m. The wavelet analysis illustrated sporadic inter-annual covariance of seasonal Tmax, Tmin and precipitation with ENSO, NAO, IOD and PDO in the UIB. The periodicities were usually constant over short timescales and discontinuous over longer timescales. This study offers a better understanding of the local climate characteristics and provides a scientific basis for government policymakers.

Highlights

  • Global climate change receives substantial attention from scholars and practitioners due to its effects in temperature and precipitation [1]

  • The results obtained from autocorrelation for temperature and precipitation showed no significant autocorrelation at the first lag, a few significant correlations persist at the later lags

  • The greater significant warming trends usually occur in January and February with a trend of 0.44 and 0.35 ◦ C/decade for Skardu and Gilgit, respectively

Read more

Summary

Introduction

Global climate change receives substantial attention from scholars and practitioners due to its effects in temperature and precipitation [1]. Precipitation is one of the most essential variables due to its critical significance in global climate systems and energy cycles [2]. Changes in precipitation have an impact on hydrological, ecological, and biogeochemical processes, either directly or indirectly [2,3]. Temperature change has a great impact on climate variability, and it is especially essential because of its role in the global climate system and energy cycles [4]. It is indispensable to quantify changes in temperature and precipitation to understand climate influence on various aspects of the environment As a result of the increased moisture content in the atmosphere, global warming may have an impact on the global hydrological cycle [5].

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.