Abstract

AbstractKnowledge of present-day ice temperature and velocity is important in order to determine how fast a glacier will respond to present and future climate change. We apply a two-dimensional higher-order thermomechanical flowband model to simulate present-day ice temperature and velocity along the main flowline of East Rongbuk Glacier, Qomolangma (Mount Everest), Himalaya. We use recent (2005–11) observational data to validate the numerical model. Modelled and observed ice surface velocities exhibit good agreement. Modelled ice temperatures agree well with observed values in two shallow boreholes that are ∼18 m deep. The model suggests that the ablation zone of East Rongbuk Glacier, km 4 to km 10 from the glacier head, is underlain by temperate ice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.