Abstract

Thermomechanical-cycling processes were applied to a metastable Ti-23Nb-0.7Ta-2Zr-1.0O (at%) alloy to control a volume fraction of mechanical twins, resulting from activation of twinning-induced plasticity effects. Analysis of the microstructure features designed using electron backscattering and X-ray diffraction revealed the deformation bands induced by the cycling process were characterized as only {332}< 113 >β twinning. It was also observed that the fraction of twins was significantly increased with increasing the number of the cycles in the process, resulting in a pronounced softening effect. To shed a light on the relevant micro-scale features (e.g., geometric orientation and stress concentrations) responsible for the microstructure evolution and mechanical response, the local Schmid factor of grains and geometrically-necessary dislocation densities were evaluated from experimentally observed results, and correlated with deformation twinning. A good correlation between the local geometric Schmid factor and softening behavior, due to texture evolution within twins was established, as well as the effect of local stress concentrations on microstructure evolution of this Ti-Nb Gum metal. Significant decrease in micro-hardness (approximately 18% from untwinned structure) was achieved by highly twinned structure, and a possible deformation mechanism was established to enhance ductility without evident elastic properties variation in metastable β Ti alloys.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.