Abstract

Abstract Breaking of surface waves was monitored with conductivity measurements at wind speeds up to 18 m s−1. This method of wave breaking detection is well defined but excludes microbreakers and breaking of very short gravity waves. Observations in both fetch limited and open ocean conditions reveal that wind speed or wave age are insufficient to characterize breaking activity. A scaling of the breaking frequency based on wind energy input is proposed. This scaling collapses the authors’ diverse datasets, consistent with energy dissipation being determined primarily by the high frequency tail of the wave spectrum. Breaking waves with significant air entrainment were observed to have wavelengths between ∼0.1 of the dominant waves and that of the largest wind waves. The median value of the period of breaking waves is approximately half the period of the dominant waves and the mean height of breaking waves is ∼0.7 times the significant wave height. Less than 10% of observed breaking events resulted in deep...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.