Abstract

Abstract Elements with low first ionization potential (FIP) are known to be 3–4 times more abundant in active region loops of the solar corona than in the photosphere. There have been observations suggesting that this observed “FIP bias” may be different in other parts of the solar corona and such observations are thus important in understanding the underlying mechanism. The Solar X-ray Monitor (XSM) on board the Chandrayaan-2 mission carried out spectroscopic observations of the Sun in soft X-rays during the 2019–2020 solar minimum, considered to be the quietest solar minimum of the past century. These observations provided a unique opportunity to study soft X-ray spectra of the quiescent solar corona in the absence of any active regions. By modeling high-resolution broadband X-ray spectra from XSM, we estimate the temperature and emission measure during periods of possibly the lowest solar X-ray intensity. We find that the derived parameters remain nearly constant over time with a temperature around 2 MK, suggesting the emission is dominated by X-ray bright points. We also obtain the abundances of Mg, Al, and Si relative to H, and find that the FIP bias is ∼2, lower than the values observed in active regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.