Abstract

AbstractLow-mass star forming regions are rich inventories of complex organic molecules. Furthermore, they show significant chemical diversity even among sources in a similar physical evolutionary stage (i.e. Class 0 sources). One distinct case is the hot corino chemistry characterized by rich existence of saturated complex organic molecules such as HCOOCH3 and C2H5CN, whereas the other is the warm carbon-chain chemistry (WCCC) characterized by extraordinary richness of unsaturated complex organic molecules such as carbon-chain molecules. We here summarize these observational achievements during the last decade, and present a unified picture of carbon chemistry in low-mass protostellar cores. The chemical diversity most likely originates from the source-to-source difference in chemical compositions of grain mantles. In particular, the gas-phase abundance of CH4 evaporated from grain mantles is thought to be a key factor for appearance of WCCC. The origin of the diversity and its evolution to protopranetary disks are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.