Abstract
Barrier coasts display a chain of islands, separated by tidal inlets that connect a back‐barrier basin to a sea or ocean. Observations show that barrier island length generally decreases for increasing tidal range and increasing basin area. However, this has neither been reproduced in model studies nor explained from the underlying physics. This is the aim of our study. Here we simulate barrier coast dynamics by combining a widely used empirical relationship for inlet dynamics with a process‐based model of the tidal hydrodynamics. Our model results show stable inlet systems with more than one inlet open that support the observed qualitative relationships and fit in existing barrier coast classifications. To explain this, we identify a competition between a destabilizing mechanism (bottom friction in inlets, tending to reduce the number of open inlets) and a stabilizing one (spatially varying pressure gradients over the inlets, tending to keep the inlets open).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.