Abstract

In this Letter, we provide experimental evidence of the time-reversal symmetric Hall effect in a mesoscopic system, namely, high-mobility graphene-WSe2 heterostructures. This linear, dissipative Hall effect, whose sign depends on the sign of the charge carriers, persists up to room temperature. The magnitude and the sign of the Hall signal can be tuned using an external perpendicular electric field. Our joint experimental and theoretical study establishes that the strain induced by lattice mismatch, or alignment angle inhomogeneity, produces anisotropic bands in graphene while simultaneously breaking the inversion symmetry. The band anisotropy and reduced spatial symmetry lead to the appearance of a time-reversal symmetric Hall effect. Our study establishes graphene-transition metal dichalcogenide-based heterostructures as an excellent platform for studying the effects of broken symmetry on the physical properties of band-engineered two-dimensional systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.