Abstract
The spin-splitter effect is theoretically predicted to generate an unconventional spin current with x- and z- spin polarization via the spin-split band in antiferromagnets. The generated torque, namely, spin-splitter torque, is effective for the manipulation of magnetization in an adjacent magnetic layer without an external magnetic field for spintronic devices such as MRAM. Here, we study the generation of torque in collinear antiferromagnetic RuO_{2} with (100), (101), and (001) crystal planes. Next we find all x-, y-, and z-polarized spin currents depending on the Néel vector direction in RuO_{2}(101). For RuO_{2}(100) and (001), only y-polarized spin current was present, which is independent of the Néel vector. Using the z-polarized spin currents, we demonstrate field-free switching of the perpendicular magnetized ferromagnet at room temperature. The spin-splitter torque generated from RuO_{2} is verified to be useful for the switching phenomenon and paves the way for a further understanding of the detailed mechanism of the spin-splitter effect and for developing antiferromagnetic spin-orbitronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.