Abstract

The many-body theory of interacting electrons in solids establishes the existence of elementary excitations, named quasi-particles, which show a one-to-one correspondence with non-interacting electrons. But this so-called Fermi liquid approach breaks down spectacularly in one-dimensional metals1. In this situation, which is described by the Luttinger liquid formalism, the quasiparticles are replaced by distinct collective excitations involving spin and charge, called spinons and holons, respectively2. This approach predicts power-law behaviour for the various properties of one-dimensional metals which is experimentally testable using a wide variety of methods, such as transport measurements3,4 and optical conductivity measurements5. Photoemission, on the other hand, provides a means by which the spin and charge excitations can be observed directly. Previous photoemission studies of quasi-one-dimensional metals have essentially revealed only the absence of any discontinuity of the spectral function at the Fermi energy6, consistent with theoretical expectations. Recently, signatures of the existence of spin-charge separation have been inferred from line-shape analyses in a metal with different bands7 and in an insulator8. Here we present photoemission data from a genuine one-dimensional metal constructed on an insulating substrate. The spectra contain structures indicative of the excitation of spin and charge collective modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.