Abstract
The diamagnetic susceptibility of a superconductor is directly related to its superfluid density. Mutual inductance is a highly sensitive method for characterizing thin films; however, in traditional mutual inductance measurements, the measured response is a non-trivial average over the area of the mutual inductance coils, which are typically of millimeter size. Here we image localized, isolated features in the diamagnetic susceptibility of {\delta}-doped SrTiO3, the 2-DES at the interface between LaAlO3 and SrTiO3, and Nb superconducting thin film systems using scanning superconducting quantum interference device susceptometry, with spatial resolution as fine as 0.7 {\mu}m. We show that these features can be modeled as locally suppressed superfluid density, with a single parameter that characterizes the strength of each feature. This method provides a systematic means of finding and quantifying submicron defects in two-dimensional superconductors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.