Abstract

AbstractThe very low‐frequency transmitter in the Northwest Cape of Australia (NWC) has previously been observed to pitch‐angle scatter electrons with energies from 30–400 keV, creating enhanced fluxes measured by low‐Earth orbiting (LEO) satellites. Here we use observations from the Energetic Particle Telescope on PROBA‐V. We compare the measured flux, as a function of local magnetic field strength, when the NWC transmitter is “on” versus “off,” and find enhanced fluxes only when NWC is “on” and located on the nightside. The enhanced fluxes occur in the population gradually transitioning from “permanently trapped” to “quasi‐trapped.” We show that electrons up to 800 keV, substantially higher energy than previously studied, are scattered by resonant interactions with NWC to produce enhanced fluxes. The enhanced fluxes appear at multiple L‐shells for each energy channel, consistent with resonance conditions at distinct wave normal angles, that indicate ducted interactions at L < 1.55 and unducted interactions at L > 1.65.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.