Abstract
Two-dimensional lattice defects, including surface and grain boundaries, in various perovskite oxides have garnered considerable attention, as the overall physical properties of the oxides can significantly vary depending on the atomic and electronic structure of the defects. In particular, because Ruddlesden–Popper (RP) planar faults have a unique lattice structure with [AO] monolayers being inserted in an ABO3 perovskite framework, they have attracted considerable attention, resulting in various relevant studies being conducted. This study focuses on the effect of lattice strain on formation of RP faults and on critical thickness in (001) epitaxial LaNiO3 thin-film fabrication through a sol–gel process. Atomic-scale direct observations identifies that a fault-free coherent buffer layer forms during the RP fault generation and its thickness varies depending on the strain exerted from the substrate. When DyScO3, the lattice mismatch of which is the largest, is used as a substrate, the critical thickness of the fault-free buffer layer remarkably reduces to a few unit cells. This work highlights the significance of direct observation to understand the defect formation in perovskite oxides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.