Abstract

A mixture of foliage and soil is thermally heterogeneous, so the radiometric temperature of the mixture depends on view direction. A simple linear mixture model was applied to estimate the component surface temperatures of foliage and soil temperatures. The potential of directional observations in the thermal infrared region for land surface studies is a largely uncharted area of research. The availability of the dual-view Along Track Scanning Radiometer (ATSR) observations led to explore new opportunities in this direction. In the context of studies on heat transfer at heterogeneous land surfaces, multiangular thermal infrared (TIR) observations offer the opportunity of overcoming fundamental difficulties in modeling sparse canopies. Three case studies were performed on the estimation of the component temperatures of foliage and soil. The first one included the use of multi-angular field measurements at view angles of 0/spl deg/, 23/spl deg/ and 52/spl deg/. The second and third one were done with directional ATSR observations at view angles of 0/spl deg/ and 53/spl deg/ only. Different models have been proposed in literature to interpret observations of directional exitance: (1) simple geometric (deterministic) models of the system, (2) radiative transfer within a complete canopy, and (3) radiative transfer in an inhomogeneous thick layer of vegetation. Our approach is based on the third modeling concept. A target comprising a mixture of foliage and soil is characterized by the gap fraction, and observed radiance is described as a weighted sum of foliage radiance and soil radiance, with the weights being the gap fraction and its complement, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.