Abstract

The ideas of topology have found tremendous success in closed physical systems, but even richer properties exist in the more general open or dissipative framework. We theoretically propose and experimentally demonstrate a bulk Fermi arc that develops from non-Hermitian radiative losses in an open system of photonic crystal slabs. Moreover, we discover half-integer topological charges in the polarization of far-field radiation around the bulk Fermi arc. Both phenomena are shown to be direct consequences of the non-Hermitian topological properties of exceptional points, where resonances coincide in their frequencies and linewidths. Our work connects the fields of topological photonics, non-Hermitian physics, and singular optics, providing a framework to explore more complex non-Hermitian topological systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.