Abstract
Interactions between oxygen and gold surfaces are fundamentally important in diverse areas of science and technology. In this work, an oxygen dimer structure was observed and identified on gold nanoparticles in catalytic decomposition of hydrogen peroxide to oxygen and water. This structure, which is different from isolated atomic or molecular oxygen surface structures, was observed with in situ surface-enhanced Raman spectroscopic measurements and identified with density functional theory calculations. The experimental measurements were performed using monodisperse 5, 50 and 400 nm gold particles supported on silica with liquid-phase hydrogen and deuterium peroxides at multiple pH values. The calculations show that on surfaces with coordinatively unsaturated gold atoms, two oxygen atoms preferentially share a gold atom with a bond distance of 0.194-0.196 nm and additionally bind to two other surface gold atoms with a larger bond distance of 0.203-0.213 nm, forming an Au-O-Au-O-Au structure. The formation of this structure depends on reaction rates and conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.