Abstract
In this study, we investigate the oblique collision of two ion-acoustic waves (IAWs) in a three-species plasma composed of electrons, positrons, and ions. We use the extended Poincare-Lighthill-Kuo (PLK) method to derive the two-sided Korteweg-de-Vries (KdV) equations and Hirota’s method for soliton solutions. The effects of the ratio (δ) of electron temperature to positron temperature and the ratio (p) of the number density of positrons to that of electrons on the phase shift are studied. It is observed that the phase shift is significantly influenced by the parameters mentioned above. It is also observed that for some time interval during oblique collision, one practically motionless composite structure is formed, i.e., when two ion-acoustic waves with the same amplitude interact obliquely, a new non-linear wave is formed during their collision, which means that ahead of the colliding ion-acoustic solitary waves, both the amplitude and width are greater that those of the colliding solitary waves. As a result, the nonlinear wave formed after collision is a new one and is delayed. The oblique collision of solitary waves in a two-dimensional geometry is more realistic in high-energy astrophysical pair plasmas such as the magnetosphere of neutron stars and black holes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.