Abstract

We hypothesized that, due to a cross-talk between cytoplasmic O2−-sources and intraluminally expressed xanthine oxidase (XO), intraluminal O2− is instrumental in mediating intraluminal (endothelial dysfunction) and cytosolic (p38 and ERK1/2 MAPKs phosphorylation) manifestations of vascular oxidative stress induced by endothelin-1 (ET-1) and angiotensin II (AT-II). Isolated guinea-pig hearts were subjected to 10-min agonist perfusion causing a burst of an intraluminal O2−. ET-1 antagonist, tezosentan, attenuated AT-II-mediated O2−, indicating its partial ET-1 mediation. ET-1 and Ang-T (AT-II + tezosentan) triggered intraluminal O2−, endothelial dysfunction, MAPKs and p47phox phosphorylation, and NADPH oxidase (Nox) and XO activation. These effects were: (i) prevented by blocking PKC (chelerythrine), Nox (apocynin), mitochondrial ATP-dependent K+ channel (5-HD), complex II (TTFA), and XO (allopurinol); (ii) mimicked by the activation of Nox (NADH); and mitochondria (diazoxide, 3-NPA) and (iii) the effects by NADH were prevented by 5-HD, TTFA and chelerythrine, and those by diazoxide and 3-NPA by apocynin and chelerythrine, suggesting that the agonists coactivate Nox and mitochondria, which further amplify their activity via PKC. The effects by ET-1, Ang-T, NADH, diazoxide, and 3-NPA were opposed by blocking intraluminal O2− (SOD) and XO, and were mimicked by XO activation (hypoxanthine). Apocynin, TTFA, chelerythrine, and SOD opposed the effects by hypoxanthine. In conclusion, oxidative stress by agonists involves cellular inside-out and outside-in signaling in which Nox-mitochondria-PKC system and XO mutually maintain their activities via the intraluminal O2−.

Highlights

  • Oxidative stress and endothelial dysfunction play a critical role in the pathogenesis of cardiovascular disease [1,2,3] and such states as post-ischemic inflammation and no-reflow phenomenon [4,5,6]

  • It is believed that cardiovascular risk factors, which function via such agents as angiotensin II (AT-II) and endothelin-1 (ET-1) [7,8,9], and ischemia/reperfusion acting via ET-1 [4,6,10] mediate the production of excess vascular reactive oxygen species (ROS), including superoxide (O2−)

  • Production, which would be similar to that induced by ischemia/reperfusion in our guinea pig heart model, a production that appeared to be mediated by ET-1 [10]

Read more

Summary

Introduction

Oxidative stress and endothelial dysfunction play a critical role in the pathogenesis of cardiovascular disease [1,2,3] and such states as post-ischemic inflammation and no-reflow phenomenon [4,5,6]. The present study, which utilizes the isolated guinea-pig heart model [10], aimed to investigate the role of cross-talk between the vascular O2− sources in acute ET-1 and AT-II signaling to mediate O2− production and endothelial dysfunction, and MAPKs phosphorylation (i.e., intraluminal and cytosolic manifestations of the oxidative stress, respectively). Both agonists were studied because they may differentially activate MAPKs [24]. The detailed hypotheses tested in this study were those outlined in Scheme 1, and their rationales were as follows

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.