Abstract

The main objective of this research was to establish a semiautomated object-based image analysis (OBIA) methodology for locating landslides. We have detected and delineated landslides within a study area in north-western Iran using normalized difference vegetation index (NDVI), brightness, and textural features derived from satellite imagery (IRS-ID and SPOT-5) in combination with slope and flow direction derivatives from a digital elevation model (DEM) and topographically oriented gray-level cooccurrence matrices (GLCMs). We utilized particular combinations of these information layers to generate objects by applying multiresolution segmentation in a sequence of feature selection and object classification steps. The results were validated by using a landslide inventory database including 109 landslide events. In this study, a combination of these parameters led to a high accuracy of landslide delineation yielding an overall accuracy of 93.07%. Our results confirm the potential of OBIA for accurate delineation of landslides from satellite imagery and, in particular, the ability of OBIA to incorporate heterogeneous parameters such as DEM derivatives and surface texture measures directly in a classification process. The study contributes to the establishment of geographic object-based image analysis (GEOBIA) as a paradigm in remote sensing and geographic information science.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.